Maniukiewicz, W., Molins, E., Miravitlles, C., Wallet, J.-C. \& Gaydou, E. M. (1996). J. Chem. Crystallogr. 26, 691-694.
Mootz, D. \& Fayos, J. (1970). Acta Cryst. B26, 2046-2054.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tinant, B., Declercq, J.-P., Wallet, J.-C., Gaydou, E. M. \& Baldy, A. (1991). Bull. Soc. Chim. Belg. 100, 329-338.

Wallet, J.-C., Cody, V. \& Wojtczak, A. (1994). Struct. Chem. 5, 361366.

Wallet, J.-C., Cody, V., Wojtczak, A. \& Blessing, R. H. (1993). AntiCancer Drug Des. 8, 325-332.
Wallet, J.-C., Gaydou, E. M. \& Baldy, A. (1989). Acta Cryst. C45, 512-515.
Williams, J. M. \& Peterson, S. W. (1972). Am. Crystallogr. Assoc. Winter Meet., Albuquerque, NM, USA. Abstract I7, p. 51.
Zsolnai, L. \& Pritzkow, H. (1994). ZORTEP. ORTEP for a PC. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 249-250

## 5,5-Dihydroxyethylbarbituric Acid

Nuria Irles, ${ }^{a}$ J. Antoni Subirana ${ }^{a}$ and Xavier Solans ${ }^{b}$<br>${ }^{a}$ Departament d'Enginyeria Química, ETS d'Enginyers Industrials, Universitat Politècnica de Catalunya, Diagonal 647, E-08028-Barcelona, Spain, and ${ }^{b}$ Departament de Cristallografia, Universitat de Barcelona, Martíi Franquès s/n, E-08028-Barcelona, Spain. E-mail: xavier@natura.geo. ub.es

(Received 1 July 1997; accepted 17 October 1997)


#### Abstract

The title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$, does not show conformational symmetry in the crystal. It is stabilized by intermolecular hydrogen bonds producing a threedimensional network of hydrogen bonds. The two molecules in the asymmetric unit differ in the conformation of the six-membered ring and the way in which each participates in the hydrogen-bonding network.

\section*{Comment}

The title molecule, (I), was prepared as a preliminary step in the synthesis of a new achiral nucleotide analogue (Barbier et al., 1993). The crystal structure was studied as part of a program to examine the packing characteristics of barbiturates containing 5,5-


polar substituents which can be involved in hydrogen bonding.

(I)

The asymmetric unit of the title structure contains two non-equivalent molecules. The two molecules are pseudo-related by $x_{A}=x_{B}+\frac{1}{2}, y_{A}=\frac{1}{2}-y_{B}, z_{A}=z_{B}$, which together with the crystal symmetry, suggests the pseudo-translation vector $\left[\frac{1}{2}, 0, \frac{1}{2}\right]$. This is a noncrystallographic translation symmetry because 295 reflections with $h+l=2 n+1$ have $I>10 \sigma(I)$ [802 have $I>3 \sigma(I)]$.

The main differences between the two molecules are in the conformation of the six-membered ring and the hydrogen bonds formed by the hydroxyl groups. The six-membered ring of molecule $A$ has a twistboat form with the $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3, \mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4-$ Cl and $\mathrm{Cl}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$ torsion angles equal to $-7.2(3),-1.8(3)$ and $-7.3(3)^{\circ}$, respectively, while that of molecule $B$ has a boat form with corresponding torsion angles of $3.2(3), 5.8(3)$ and $11.4(3)^{\circ}$. Only one hydroxyl group of molecule $A$ is involved in a hydrogen bond ( $\mathrm{O} 5 A \cdots \mathrm{O} 4 A$ ), while both hydroxyl groups of molecule $B$ are involved in hydrogen bonds with O atoms of molecule $A$. These hydrogen bonds produce a twodimensional network in the $a b$ plane.

A search of the Cambridge Structural Database (Allen \& Kennard, 1993) for 5,5-disubstituted barbiturates yielded 68 compounds for which crystal structures have been determined. All compounds, including the title


Fig. 1. The molecular structure of (I) showing $50 \%$ probability displacement ellipsoids.
compound, were found to have the triketo tautomeric form in the crystal structure. The hydrogen bonds involving the $\mathrm{N}-\mathrm{H}$ groups of the barbiturate ring produce an infinite polar chain along the [101] axis. These chains are linked by the hydrogen bonds involving the hydroxyl groups to produce a three-dimensional network of hydrogen bonds.

## Experimental

Prismatic colourless crystals with well developed features were obtained by the sitting-drop vapour-phase diffusion method of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetonitrile ( $68: 32$ ) solution (concentration $1 \mathrm{mg} \mathrm{ml}^{-1}$ ) against a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetonitrile ( $58: 42$ ) solution (Van der Sluis et al., 1989).

## Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=216.20$
Monoclinic
$P 2_{1} / c$
$a=12.117$ (2) $\AA$
$b=12.324$ (2) $\AA$
$c=13.508(3) \AA$
$\beta=108.83(3)^{\circ}$
$V=1909.2(6) \AA^{3}$
$Z=8$
$D_{x}=1.504 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured

## Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
5515 measured reflections
5464 independent reflections
2675 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=29.97^{\circ}$
$h=-17 \rightarrow 16$
$k=0 \rightarrow 17$
$l=0 \rightarrow 18$
3 standard reflections frequency: 120 min intensity decay: none

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.290$
$S=0.984$
5464 reflections
296 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1817 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

| $\mathrm{N} 1 A-\mathrm{C} 2 A$ | $1.372(2)$ | $\mathrm{N} 1 B-\mathrm{C} 2 B$ | $1.368(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1 A-\mathrm{C} 1 A$ | $1.374(3)$ | $\mathrm{N} 1 B-\mathrm{C} 1 B$ | $1.377(3)$ |
| $\mathrm{N} 2 A-\mathrm{C} 2 A$ | $1.374(2)$ | $\mathrm{N} 2 B-\mathrm{C} 3 B$ | $1.361(2)$ |
| $\mathrm{N} 2 A-\mathrm{C} 3 A$ | $1.375(2)$ | $\mathrm{N} 2 B-\mathrm{C} 2 B$ | $1.375(2)$ |
| $\mathrm{C} 1 A-\mathrm{C} 4 A$ | $1.527(2)$ | $\mathrm{C} 1 B-\mathrm{C} 4 B$ | $1.520(2)$ |
| $\mathrm{C} 3 A-\mathrm{C} 4 A$ | $1.519(2)$ | $\mathrm{C} 3 B-\mathrm{C} 4 B$ | $1.516(2)$ |


| $\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{C} 1 A$ | $126.83(15)$ | $\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 1 B$ | $125.73(15)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 2 A-\mathrm{N} 2 A-\mathrm{C} 3 A$ | $126.0(2)$ | $\mathrm{C} 3 B-\mathrm{N} 2 B-\mathrm{C} 2 B$ | $126.6(2)$ |
| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{N} 1 A$ | $120.6(2)$ | $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{N} 1 B$ | $120.5(2)$ |
| $\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 4 A$ | $122.0(2)$ | $\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 4 B$ | $121.4(2)$ |
| $\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{C} 4 A$ | $117.20(15)$ | $\mathrm{N} 1 B-\mathrm{C} 1 B-\mathrm{C} 4 B$ | $117.92(15)$ |
| $\mathrm{O} 2 A-\mathrm{C} 2 A-\mathrm{N} 1 A$ | $122.7(2)$ | $\mathrm{O} 2 B-\mathrm{C} 2 B-\mathrm{N} 1 B$ | $122.7(2)$ |
| $\mathrm{O} 2 A-\mathrm{C} 2 A-\mathrm{N} 2 A$ | $121.2(2)$ | $\mathrm{O} 2 B-\mathrm{C} 2 B-\mathrm{N} 2 B$ | $121.2(2)$ |
| $\mathrm{N} 1 A-\mathrm{C} 2 A-\mathrm{N} 2 A$ | $116.1(2)$ | $\mathrm{N} 1 B-\mathrm{C} 2 B-\mathrm{N} 2 B$ | $116.1(2)$ |
| $\mathrm{O} 3 A-\mathrm{C} 3 A-\mathrm{N} 2 A$ | $119.8(2)$ | $\mathrm{O} 3 B-\mathrm{C} 3 B-\mathrm{N} 2 B$ | $120.3(2)$ |
| $\mathrm{O} 3 A-\mathrm{C} 3 A-\mathrm{C} 4 A$ | $121.8(2)$ | $\mathrm{O} 3 B-\mathrm{C} 3 B-\mathrm{C} 4 B$ | $121.4(2)$ |
| $\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$ | $118.35(14)$ | $\mathrm{N} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$ | $118.15(14)$ |
| $\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 1 A$ | $114.3(2)$ | $\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 1 B$ | $114.2(2)$ |

Table 2. Hydrogen-bonding geometry $\left({ }_{A},^{\circ}\right)$

| $D-\mathrm{H} \cdots \mathrm{A}$ | D-H | H... $A$ | D...A | D-H...A |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1 A-\mathrm{HN} 1 A \cdots \mathrm{O} 2 B^{1}$ | 0.86 | 2.20 | 3.044 (3) | 165 |
| $\mathrm{N} 1 B-\mathrm{HN} 1 B \cdots{ }^{\text {a }}{ }^{\text {ij }}$ | 0.86 | 2.07 | 2.918 (3) | 168 |
| $\mathrm{N} 2 A-\mathrm{HN} 2 A \cdot \mathrm{O} 3 A^{\mathrm{m}}$ | 0.91 (4) | 2.02 (4) | 2.894 (2) | 161 (3) |
| $\mathrm{N} 2 B-\mathrm{HN} 2 B \cdots \mathrm{O} B^{\text {i- }}$ | 0.85 (4) | 2.00 (4) | 2.835 (2) | 165 (4) |
| O4B-HO4B $\cdots$ - 3 3 | 0.82 | 2.49 | 2.923 (3) | 114 |
| O5A-HO5A . . O4A ${ }^{\text {I }}$ | 1.06 (4) | 1.91 (3) | 2.832 (3) | 143 (2) |
| O5B-HO5B . . O5A ${ }^{\prime}$ | 0.82 | 2.05 | 2.849 (4) | 163 |

Symmetry codes: (i) $1-x, \frac{1}{2}+y$, $\frac{3}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $1-x, 1-y, 2-z ;(\mathrm{iv})-x,-y, 2-z ;(\mathrm{v})-x, y-\frac{1}{2}, \frac{3}{2}-z$
The positions of 16 H atoms were calculated, while the remaining eight (HO4A, HO5A, HN2A, HN2B, H7A, H7 $A^{\prime}$, $H 6 B$ and $H 6 B^{\prime}$ ) were obtained from a difference synthesis. An overall isotropic displacement parameter was used for all H atoms. The calculated H atoms were refined using a riding model, while the remainder were refined freely.

Data collection: CAD-4/PC (Kretschmar, 1996). Cell refinement: CAD-4/PC. Data reduction: CFEO (Solans, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Brueggemann \& Schmid, 1990). Software used to prepare material for publication: PLATON (Spek, 1990).

The authors thank Dr Schwartz who kindly donated the compound investigated. This work has been supported in part by the DGICYT (grant PB93-1067). IN acknowledges financial support from the Ministerio de Educación y Ciencia, Spain.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN 1024). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Barbier, B., Visscher, J. \& Schwartz, A. W. (1993). J. Mol. Evol. 37, 554-558.
Brueggemann, R. \& Schmid, G. (1990). PC Version of ORTEP3.2. University of Ulm, Germany.
Kretschmar, M. (1996). CAD-4/PC. Version 2.0. PC Version of CAD-4 Software Version 5.0. University of Tubingen, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crvstal Structures. University of Göttingen, Germany.
Solans, X. (1978). CFEO. University of Barcelona, Spain.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Van der Sluis, P., Hezemans, A. M. F. \& Kroon, J. (1989). J. Appl. Cryst. 22, 340-344.

